

FORM NUMBER

CLASSROOM CONTACT PROGRAMME

PATTERN : GUJCET

Time : 3 Hours

SAMPLE PAPER

Max. Marks: 120

ENGLISH MEDIUM

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. Please check that this question paper contains 14 printed pages.
- 2. This question paper contains 120 questions. All the questions are compulsory.
- 3. Each question carries 1 mark. Each incorrect response carries $-\frac{1}{4}$ marks.
- Select proper option to make the statement correct. 4.
- Read the questions carefully before you answer. 5.
- 6. The OMR sheet is given for answering the questions. The answer to each question is represented by (1) O, (2) O, (3)

O, (4) O. Darken the circle • of the correct answer with ball-pen.

7. Rough work is to be done on the space provided for this purpose in the Test Booklet only.

Your Hard Work Leads to Strong Foundation

Corporate Office City Head Office ALLEN CAREER INSTITUTE "SADHYA" Opp. The Grand Bhagwati, Off S.G. Highway, Behind Patel Avenue, "SANKALP", CP-6, Indra Vihar, Kota (Rajasthan)-324005 Near Purshottam Bunglow, Bodakdev, Ahmedabad (GUJARAT)-380054 🖀 +91-744-2436001 📥 +91-744-2435003 🏚 info@allen.ac.in 🖀 +91-79-49033100 🚖 infoadi@allen.ac.in Ahmedabad Centres NARANPURA NIKOL MANINAGAR **CHANDKHEDA** GANDHINAGAR 3rd Floor, Chanakya Plaza, 3rd & 4th Floor. 3rd Floor Purshottam Mahal, Satved Complex, 3rd Floor, Office Unit 325, 3rd Opp. Swaminarayan Temple, Near Swagat Bungalow, Near Dr. Valu's Hospital, Sunrise Business Centre, Floor, Super Mall 2, New C.G. Road, Chandkheda, Opp. Gopi Dairy, Nr, Shreeji Sankalp Near GH 0 Circle, S G Near Jaihind Cross Road, Ahmedabad - 380024 Sardar Patel Stadium Road, & Divyajivan Satya, Higway Infocity IT Railway Crossing Road, Naranpura, Ahmedabad - 380014 Maninagar, Ahmedabad - 380008

Tel: +91-8511136918, 079-25440105

Tel: +91-79-40306199, 079-40306200

Tel: +91-79-40306140, 079-40306141

Nikolgam to Ring Road, Tel: 079-49033100

Metropolis, Gandhinagar Tel: 079-49033100

SAMPLE PAPER

PART - 1 : PHYSICS

1. A capacitor of capacitance C_1 charged at a certain potential V. It is connected with another uncharged capacitor C_2 . What is final p.d. of this new system ?

(A)
$$\frac{C_2 V}{C_1 + C_2}$$
 (B) $\frac{C_1 V}{C_1 + C_2}$ (C) $\left(1 + \frac{C_2}{C_1}\right) V$ (D) $\left(1 - \frac{C_2}{C_1}\right) V$

- 2. The north pole of a magnet is falling on a metallic ring shown in the figure. The direction of induced current, it looked from upside in the ring will be r
 - (A) Clockwise or anticlockwise depending on the metal of the ring

(B) $\sqrt{2}$

- (B) No induced current
- (C) Anticlockwise
- (D) Clockwise
- **3.** An electron having electric charge e moves in the circular orbit of radius r with frequency f. What will be magnetic moment linked with orbital motion of electron ?

(A)
$$\pi fer^2$$
 (B) $\frac{\pi fr^2}{e}$

4. The frequency of the output signal becomes times by doubling the value of the capacitance in the LC oscillator circuit.

(C) $\frac{\pi fe}{r^2}$

(C) $\frac{1}{2}$

(A)
$$\frac{1}{\sqrt{2}}$$

5. If the potential energy of the electron in the hydrogen atom is $-\frac{e^2}{8\pi\epsilon_0 r}$, then what is its kinetic energy

(A)
$$-\frac{e^2}{4\pi\epsilon_0 r}$$
 (B) $\frac{e^2}{8\pi\epsilon_0 r}$ (C) $-\frac{e^2}{8\pi\epsilon_0 r}$ (D) $\frac{e^2}{4\pi\epsilon_0 r}$

6. A body of mass 200 g moves at the speed of 5 m/hr. So De-Broglie wavelength related to it is of the order (h = 6.626×10^{-34} J.s)

(C) 10⁻³⁰ m

(A)
$$10^{-10}$$
 m (B) 10^{-20} m

- At a certain place, the vertical component of the earth's magnetic field is 0.4 × 10⁻⁴ T and horizontal component is 0.3 × 10⁻⁴ T. What will be the total intensity of magnetic field of the earth ?
 (A) 0.5 × 10⁻⁴ T
 (B) 0.5 × 10⁻² T
 (C) 0.5 × 10⁻¹ T
 (D) 0.5 × 10⁰ T
- 8. A conducting ring of radius r is placed perpendicularly inside a time varying magnetic field given by B = B0 + at, as shown in the figure. B0 and a are positive constant. Find emf produced in the ring.

(D) $\frac{\pi er^2}{f}$

(D) 2

(D) 10⁻⁴⁰ m

GUJCET

- 9. In the following reaction..... particular are exited $_{Z}X^{A} \rightarrow_{Z+1}Y^{A} \rightarrow_{Z-1}K^{A-4} \rightarrow_{Z-1}K^{A-4}$
 - (A) α, β, γ (B) γ, α, β (C) β, α, γ (D) γ, β, α
- 10.Which of the following phenomenon is not common for light and sound ?(A) Interference(B) Diffraction(C) Refraction(D) Polarisation
- 11. If the height of a T.V. transmitter tower is doubled, then the region covered by this transmitter(A) becomes double (B) becomes four times (C) becomes three times(D) no change
- 12. In the given circuit, capacitance of each capacitor is 1 μ F. The effective capacitance between points A and B is μ F.

16. Which of the following P-N junction diode is reverse biased ?

- (A) P-N junction diode D₁
- (C) P-N junction diode D_3

- (B) P-N junction diode D₂(D) P-N junction diode D₄
- 17. If the number of undisintegrated nuclei at time t is given by $N = N0 e^{-\lambda t}$, what is the number of nuclei disintegrated between the time t_1 and t_2 ?
 - (A) $N_0(e^{-\lambda t_2} e^{-\lambda t_1})$ (B) $N_0(e^{-\lambda t_1} e^{-\lambda t_2})$ (C) $N_0(e^{\lambda t_2} e^{\lambda t_1})$ (D) $N_0(e^{\lambda t_1} e^{\lambda t_2})$

PHYSICS

(A) 4r

SAMPLE PAPER

PHYSICS

(D) $\frac{r}{4}$

18. In a given circuit, equivalent resistance between A and B = Ω .

(B) $\frac{5r}{2}$

- 19. The ratio of energies of electron in the first excited state to its second excited state in H-atom is
 (A) 1:4
 (B) 4:9
 (C) 9:4
 (D) 4:1
- 20. What is the type of the semiconductor, for the energy band diagram shown in the figure ?

(A) N-type semiconductor (B) P-type semiconductor (D) Both N and P type semiconductor (C) Intrinsic semiconductor V and I are given by the following equation in an A.C. circuit : 21. V = 100 sin(100t)V, I = 100 sin $\left(100 + \frac{\pi}{3}\right)$ mA The power in the circuit is equal toW. (A) 104 **(B)** 10 (C) 2.5 (D) 5.0 22. An electric dipole is placed at the centre of a cube. The flux passing through the surface of the cube is (D) $\frac{2q}{\epsilon}$ (C) Cannot be found (A) Infinity (B) Zero 23. Resonance frequency for L - C - R, AC series circuit is $f_0 = \dots$ (D) $\frac{\sqrt{LC}}{2\pi}$ (B) $\frac{2\pi}{\sqrt{LC}}$ (C) $\frac{\sqrt{LC}}{2\pi}$ (A) $\frac{1}{2\pi\sqrt{LC}}$ 24. The bands on a carbon resistivity have from left to right, the following colours red, yellow, green, silver. Its resistance is \dots Ω . (A) $24 \times 10^5 \pm 5\%$ (B) $2.4 \times 10^5 \pm 10\%$ (C) $24 \times 10^5 \pm 10\%$ (D) $2.4 \times 10^5 \pm 5\%$ Power P is lost when resistance R_1 is joined with the supply. If resistance R_2 is joined with resistance R_1 25. power lost in R₁ (A) increases (B) decreases (C) remains constant (D) increases or decreases that depends on R_1 and R_2 .

GUJCET

PHYSICS

The ionization potentials of hydrogenic ions A and B are V_A and V_B respectively. Now if $V_B > V_A$ then 26. (A) $r_A > r_B$ (B) $r_A < r_B$ (D) None of these (C) $r_{A} = r_{B}$ 27. An object is placed at a distance of 25 cm on the axis of a convex mirror having focal length 20 cm. Find the lateral magnification of an image. (D) $\frac{5}{0}$ (C) –4 (A) 1.8 **(B)** 4 28. There are two identical spheres A and B. Now charge Q is established on each sphere. There is a third identical neutral sphere C. Now sphere C is first brought in contact with A and separated then brought in contact with B and separated. After this what will be charge on C? (B) $\frac{Q}{2}$ (C) $\frac{3Q}{4}$ (D) $\frac{Q}{A}$ (A) Q For a uniform electric field $\vec{E} = E_0(\hat{i})$, if the electric potential at x = 0 is zero, then the value of electric 29. potential at x = +x will be (C) $x^{2}E_{0}$ $(D) - x^2 E_0$ $(B) - xE_{o}$ (A) xE_0 Wavelength of light used in Young's experiment is 5000Å. Distance between two slits is 0.2 mm. 30. Distance between slit and screen is 200 cm. If the central fringe is near x = 0, for third bright fringe x = (C) 0.5 cm (A) 1.67 cm (B) 1.5 cm (D) 5.0 cm 31. In Young's experiment, distance between two slits is 0.28 mm and distance between the slit and the screen is 1.4m. If distance between central bright fringe and third bright fringe is 0.9 cm, wavelength of light used in Young's experiment is (A) 6000 Å (B) 5000 Å (C) 4000 Å (D) 3000 Å If the frequency of 3 kHz signal has to be transmitted through amplitude modulation. Which of the 32. following frequency should use as a carrier frequency ? (B) 300 Hz (A) 30 Hz (C) 3000 Hz (D) 3 MHz 33. Four wires are made up of same material wire has maximum resistance. (B) Short and thin (C) Long and thick (A) Short and thick (D) Long and thin 34. Intensity of two sources are different and waves emitting from source experience interference. If ratio of maximum and minimum intensity in interference is 25, intensity of sources is (B) 9:4(A) 5 : 1 (C) 25 : 16 (D) 25 : 1 35. A square loop ABCD carrying a current i, is placed near and coplanar with a long straight conductor XY carrying a current I, the net force on the loop will be (A) $\frac{\mu_0 \text{Ii}}{2\pi}$ (B) $\frac{2\mu_0 \text{IiL}}{3\pi}$ L 'i L (C) $\frac{\mu_0 \text{IiL}}{2\pi}$ (D) $\frac{2\mu_0 \text{Ii}}{3\pi}$

SAMPLE PAPER

PHYSICS

- **36.** Two point charged +8q and -2q are located at x = 0 and x = L respectively. The location of a point on the X-axis at which the net electric field due to these two point charges is zero is.....
 - (A) 4 L (B) 8 L (C) $\frac{L}{4}$ (D) 2L
- **37.** A small linear object of length b is placed on the axis of a concave mirror. The end of the object facing the mirror is at a distance u from the mirror. If R is the radius of curvature of a mirror, the length of the object will be approximately.

(A)
$$b\left(\frac{2u-R}{R}\right)^2$$
 (B) $b\left(\frac{R}{2u-R}\right)^2$ (C) $\left(\frac{2u-R}{R}\right)$ (D) $b\left(\frac{R}{2u-R}\right)^2$

38. A fish in a lake is at a 6.3 m distance from the edge of the lake. If it is just able to see a tree on the edge of the lake, its depth in the lake is 5.52m. Refractive index of the water is

(A)
$$\frac{3}{4}$$
 (B) $\frac{3}{8}$ (C) $\frac{4}{3}$ (D) $\frac{8}{3}$

39. Half-life of a radioactive element is 5 min. At the end of 20 min. Its % quantity will remain undisintegrated.

(C) 25 (D) 6.25

40. The dipole moment of the charge system shown in figure is $\vec{p} = \dots$

GUJCET CHEMISTRY PART - 2 : CHEMISTRY What will be the concentration of cationic vacancy if 10^{-4} mol % of SrCl₂ is added to NaCl ? **41**. $(N_{A} = 6.02 \times 10^{23})$ (A) $6.02 \times 10^{14} \text{ mol}^{-1}$ (B) $6.02 \times 10^{17} \text{ mol}^{-1}$ (C) 6.02×10^{16} (D) $6.02 \times 10^{15} \text{ mol}^{-1}$ In a sample of sea water, 6 mg O₂ is dissolved in 1 kg water. Find concentration of O₂ in ppm for given 42. sample. (B) 6.0 (C) 60.0 (A) 0.6 (D) 16.0 43. Various steps required to extract Cu from copper pyrites mineral are given as follows. (ii) bessimerization (iii) Concentration (i) Calcination (iv) smelting (v) Purification. What is the correct order ? (B) (iii), (ii), (iv), (i), (v) (A) (i), (ii), (iii), (iv), (v) (D) (i), (iii), (iv) (ii), (v) (C) (iii), (i), (iv), (ii), (v) In Which of the following reactions, dinitrogen oxide can be produced? **44**. (B) $3Cu_{(s)} + 8HNO_3$ (10.30 %aq) \rightarrow (A) $4Cu_{(s)} + 10 \text{ HNO}_3 \text{ (dil., aq)} \rightarrow$ (D) $Zn_{(s)} + 4HNO_3$ (conc., aq) \rightarrow (C) $Cu_{(s)} + 4HNO_3$ (conc., aq) \rightarrow In which of the following, cell potential will be maximum at equilibrium? 45. (A) $Mg/Mg^{2+}(0.18M) \parallel Ag^{+}(0.15M)/Ag$ (B) $A1/A1^{3+}(0.2M) \parallel Zn^{2+}(0.15M)/Zn(s)$ (C) $Mg/Mg^{2+}(0.01M) ||Zn^{2+}(0.005M)/Zn(s)$ (D) Given all options cell potentials are same. 1.8 gm metal is deposited on passing 0.2 F electricity from fused salt of metal M. If atomic mass of 46. metal is 27, find formula of its chloride. (C) MCl₂ (A) MCl (B) MCl₂ (D) MCl₄ 47. Which compound of group-16 can act as strongest reducing agent? (A) SeO₂ $(B) \text{ TeO}_2$ (D) PoD, (C) SO₂ **48**. Which of the following compound has R-configuration? CH₃ (A) H_3C (B) D (C) H (C) H (D) H (D) H-ОН CH2CH2 49. What is the change in hybridisation for carbon having -OH during dehydration reaction of alcohol ? (A) sp^3 into sp^2 (C) sp^2 into sp^3 (B) sp^3 into sp(D) sp into sp^2 50. Which is not true? (A) boiling point of o-nitrophenol is less than p-nitrophenol (B) phenol can be used as analgesic. (C) phenol is more soluble in water than chlorobenzene (D) Phenol can be neutralised by Sodium Carbonate. 51. $3ClO^{-} \rightarrow ClO_{3}^{-} + 2Cl^{-}$, Which of the following option show correct order of this reaction? (A) rate = K $(ClO^{-})^{2}$ (C) rate = K (ClO⁻) (B) rate = K $(ClO^{-})^{3}$ (D) rate = K $(ClO^{-})^{3}$ 52. Which catalyst is used for following reaction ? α -Olefine + CO + H₂ \rightarrow Aldehyde (A) MO (VI) Complex compound (B) Ni/Pd Complex compound (C) Ni/Cd Complex compound (D) Rh/Pd Complex compound

Path to Succe		SAMPL	E PAPER		CHEMISTRY		
53.	Which of the folle	/hich of the following ion has highest spin magnetic moment ?					
	(A) Mn ²⁺	(B) Fe ²⁺	(C) CO ²⁺	(D) NJ^{2+}			
54.	If $\Delta_0 <$ P.E. for Oc	ctanhedral complex then whic	h of the following is co	orrect for d ⁶ -c	configuration?		
	(A) $t_2 g^3 e_g^3$	(B) $t_{2g}^{6}e_{g}^{0}$	(C) $t_2 g^5 e_g^1$	(D) $t_2 g^4 e_g^2$			
55.	Which of the follo	owing complex is the most st	able?				
	(A) $[Cr (SCN)_6]^{3+}$	(B) $[Cr (H_2O)_6]^{3+}$	(C) $[CrF_6]^{3-1}$	(D) [Cr(O)	$[H]_{6}]^{3-}$		
56.	$C = O + H_2 N - Z$	$\xrightarrow{H^+}_{H_2O}$ x Aldehyde. If Z = R th	then find product $X = \dots$				
	(A) Oxime	(B) Hydrozone	(C) Schiff' reagent	(D) Semi-	carbozone		
57.	$X \xrightarrow{Reduction} Y $	$\xrightarrow{\text{HNO}_2}$ CH ₃ CH ₂ OH then is	lentify X.				
	(A) CH ₃ CN	(B) CH ₃ CONH ₂	(C) CH ₃ CH ₂ NO ₂	(D) All of	them.		
58.	Which of the follo	owing is the strogest base?					
	OCH ₃	NO ₂	Cl				
	\bigcirc	\bigcirc					
	(A)	(B)	(C)	(D)			
	H ₂ N	NH ₂	NH ₂	NH ₂			
59.	Which polymer is	used to prepare gasket ?					
	(A) $C_6H_5CH = CH$	$\mathbf{H}_2 \qquad (\mathbf{B}) \ \mathbf{CH}_2 = \mathbf{CH} \ . \ \mathbf{CN}$	(C) $CF_2 = CF_2$	(D) H ₂ C=	с—сн—сн ₂		
60.	Barbituric acids a	nd its derivaties are knows as	3:		CI		
	(A) Anesthetics	(B) Antiseptic	(C) Mild analgesic	(D) Anti B	acterial		
61.	If 'a' is the edge I	length for a cubic system the	n what is the proportion of radii of spheres of simple				
	cube, body centre	a cube and face centred cub					
	(A) $\frac{1}{2}a:\frac{\sqrt{3}}{4}a:\frac{1}{2}a:1$	$\frac{1}{\sqrt{2}}a$ (B) $\frac{1}{2}a:\sqrt{3}a:\frac{1}{\sqrt{2}}a$	(C) $\frac{1}{2}a:\frac{\sqrt{3}}{2}a:\frac{\sqrt{3}}{\sqrt{2}}a$	(D) $a: \sqrt{3}$	$a:\sqrt{2}a$		
62.	Which of the foll	owing solutions has the high	est Osmotic pressure?				
	(A) 0.05 M Al(N	O ₃) ₃	(B) 0.05 M $K_4[Fe(CN)_6]$				
	(C) 0.05 M K ₃ [F	e(CN) ₆]	(D) 0.04 M $\text{FeSO}_4 \cdot (\text{NH}_4)_2 \text{SO}_4 \cdot 6\text{H}_2 \text{O}$				
63.	The change in fre	e energy for the reaction of d	ecomposition of Al_2O_3 at 500° C is as follows :				
	$\frac{2}{3}$ Al ₂ O ₃ \longrightarrow	$\frac{2}{2}$ Al ₂ O ₃ $\longrightarrow \frac{4}{2}$ Al+O ₂ Δ_r G = + 965 kJ mol ⁻¹ .					
	What is the minimum emf required to carry out electrolytic reduction of Al ₂ O ₂ at 500° C?						
	(A) 2.5 V	(B) 5.0 V	(C) 4.5 V	(D) 3.0 V			
64.	What is the perc	entange of silver in german-s	ilver alloy?				
	(A) 15%	(B) 20%	(C) 10%	(D) 0%			
65.	Which of the follo	/hich of the following method is used to purify Gallium arsenide ?					
	(A) Froth -floatati	ion method	(B) Van-Arkel method				
	(C) Zone-refining	method	(D) Electrolysis method				
66.	What is the correct	ct decreasing order of acidity	ing order of acidity for Oxoacids of group-15 elements?				
	(A) HNO_3 , H_3SbC	D_4 , H_3AsO_4 , H_3PO_4	(B) H_3PO_4 , H_3AsO_4 , H_3SbO_4 , HNO_3				
	(C) HNO_3 , H_3PO_4	, H ₃ AsO ₄ , H ₃ SbO ₄	(D) HNO_3 , H_3AsO_4 , I	H_3PO_4 , H_3SbC	D ₄		

Faite (o Success				GUJ	CET			CHEMISTRY	
67.	What is the I	UPAC nar	ne of chloral hyd	lrate?					
	(A) 2, 2, 2 –	Trichloro	ethanal		(B) 2, 2, 2 – T	richloro d	ethanol		
	(C) 2, 2, 2 -	Trichloro	ethane-1, 1-diol		(D) 2, 2, 2 – T	Trichloro	ethane -1,	1–dial	
68.	An organic of formula C_4H_8 products on s	compound . Ozonolys same react	X (C_4H_9Br) readisis of one of the plant then what is	cts with product g compou	h alcoholic KOH to give two isomeric product with gives CH ₃ CHO while other product gives two different ound X?				
	(A) 2-brome	butane	(B) 2-bromope	ntane	(C) 1,2–Dibro	mobutane	e(D) 3-Bro	mopentane	
69.	What is the p Chromic acid	product ob 1?	btained on reaction of salicylic acid with sodalime followed by oxidation with						
	(A) Benzoic	acid	(B) Benzene		(C) 1,4–Benzo	quinone	(D) Salica	ldehyde	
70.	70. For a reaction, rate = $k (A)^{x}(B)^{y}$. If concetration of A is halved and B is doulbed to reaction will be?					I then the rate of			
	(A) $\left(2x + \frac{1}{2}y\right)$	<i>,</i>)	$(B)\left(x\frac{1}{2}+y^2\right)$		(C) 2^{y-x}		(D) $\frac{1}{2(x+y)}$	<i>y</i>)	
71.	Which of the Ferric chloric	/hich of the following electrolyte is the best for co-agulation of solution prepared by hydrolysis of erric chloride with water?							
	(A) Sodium	phosphate	(B) Sodium nite	rate	(C) Potassium	chloride	(D) Magne	esium sulphate	
72.	₆₅ Gd ⁺³ iron is stable because.								
	(A) 4f -orbital is completely filled ((B) 4f - orbital is half -filled					
	(C) It has inert gas configuration			(D) 4f-orbital is completely empty					
73.	1 mole $CO(NH_3)_5Cl_3$ complex give 3 mole ions on dissolving in water. One mole of same complex gives two mole $AgCl_{(s)}$ with 2 moles of $AgNO_3$. Then complex will be								
	(A) [CO(NH	$_{3})_{3}$ Cl ₂]2N	H ₃	(B) $[CO(CH_3)_4 Cl_2]Cl.NH_3$ (D) $[CO(NH_3)_4 Cl_2]Cl_2.NH_3$					
	(C) $[CO(NH_3)]$	$)_3$ Cl]Cl ₂							
74.	What is X in	Cr(CO)x	?						
	(A) 4		(B) 5		(C) 6		(D) 3		
75.	The values of then which h	pK _b for th as highest	eir unkonown aci acidic strenght?	d compo	unds x, y, z, w a	re 10.25,	9.24, 9.12,	9.80 respectively.	
	(A) y		(B) z		(C) x		(D) w		
76.	Which of the	following	g compound can	give silv	er mirror test?				
	(A) Methanal	l	(B) Ehanal		(C) Propanone		(D) (A) an	d (B) both	
77.	A $\xrightarrow{3H_2(Ni)}_{873K}$	$B - \frac{(HN)}{273-2}$	$C_{278K} \rightarrow C \longrightarrow C$	→ D <u>1</u>	$\xrightarrow{\text{NaNO}_2(\text{aq})}_{\text{Cu, }\Delta} E \longrightarrow E$	$\frac{6(H)}{Fe+HCl}$]	[Pyridine C	$\xrightarrow{CO)_2O}$ G	
	In the above	reaction C	G is N-Phenyl eth	nanamide	then which tw	o product	s are anilir	ne?	
	(A) A and C		(B) B and F		(C) A and E		(D) C and	F	
78.	Which aqueo	us solution	n is used as an a	ntiseptic	for eyes in was	shing solu	ition?		
	(A) Boric Ac	id	(B) 0.2 phenol		(C) Bithional		(D) Furaci	n	
79.	Which vitamine is water as well as fat soluble?								
0.0	(A) A		(B) D		(C) H	_	(D) C	2	
80. Which compound is used to remove protein from sample in therapeutic c						chemical te	est?		
	(A) Trichloro acetic acid(C) Benzene				(B) Ethanol				
					(D) Propanal				

Pace (s Second

SAMPLE PAPER

MATHS

PART-3 : MATHEMATICS

81.	The local maximum value of $f(x) = x + \frac{1}{x}$ is, $x \neq 0$					
	(A) 2	(B) –2	(C) 4	(d) -4		
82.	The function $F(x) = \sum_{k=1}^{5} (x-k)^2$ is attain minimum value at $x = \dots$					
	(A) 3	(B) 2	(C) 1	(D) 4		
83.	Side of an equilateal the when length of side is	riangle increases at the ra 10 cm.	the of $\sqrt{3}$ cm/sec. Rate of	of change of its area is		
	(A) 25 cm ² /sec	(B) 15 cm ² /sec	(C) 35 cm ² /sec	(B) $15\sqrt{3}$ cm ² /sec		
84.	$\int e^{x} (\cot x - \cot^{2} x) dx - \dots$					
	(A) $e^x \operatorname{cosec}^2 x$	(B) $e^x \cot x$	(C) e^{x} (cot x+1)	(D) e^{x} (cot x-1)		
85.	$\int e^{2x} \left(\log x + \log 2 + \frac{1}{2x} \right)$	$\int dx = \dots + c$				
	(A) $\frac{e^{2x}}{2}\log 2x$	(B) $e^{2x} \log 2x$	(C) $\frac{e^x}{2}\log x$	(D) $\frac{e^{2x}}{2}\log x$		
86.	$\int \left[f(x)g''(x) - f''(x)g(x) \right] dx$	$(x) dx = \dots$				
	(A) $f(x) g'(x)+ c$ (C) $f(x) g'(x) + f''(x) g$; (x) +c	(B) $f'(x) g(x) + c$ (D) $f(x) g'(x) - f'(x) g(x)$	x) + c		
87.	$\int 2^{x} (f'(x) + \log 2.f(x)) dx$	$dx = \dots + c$				
	(A) $2^{x} f'(x)$	(B) $2^{x} f(x)$	(C) $2^{x}(\log 2)$ f(x)	(D) $(log2) f(x)$		
88.	$\int_{1}^{e} 10^{\log_{e} x} dx = \dots$					
	(A) 10log _e (10e)	(B) $\frac{10e - 1}{\log_e 10e}$	(C) $\frac{10e}{(\log_e 10)e}$	(D) (10e) loge(10e)		
89.	$\int_{0}^{\sqrt{2}} \left[x^2 \right] dx = \dots$					
	(A) $2 - \sqrt{2}$	(B) $2 + \sqrt{2}$	(C) $\sqrt{2} - 1$	(D) $\sqrt{2} - 2$		
90.	$\int_{0}^{1000} e^{x - [x]} dx =$					
	(A) $e^{1000} - 1$	(B) $\frac{e^{1000} - 1}{e - 1}$	(C) 1000 (e–1)	(D) $\frac{e-1}{1000}$		
ADI				11/14		

GUJCET MATHS The area bounded by the curve y = x|x|, X axis and the linex x = -1 and x = 1 is 91. (C) $\frac{2}{2}$ (B) $\frac{1}{2}$ (D) $\frac{4}{2}$ (A) 0 The order and degree of differial equation $\sqrt{\sin x} (dx + dy) = \sqrt{\cos x} (dx - dy)$ are and 92. respectively. (A) 1, 2 (B) 2, 2 (C) 1, 1 (D) 2, not obtained 93. The differential equation of the family $y = ax + a^2$ (a is arbitrary constant) is : (B) $y = x \cdot \frac{dy}{dx} + \left(\frac{dy}{dx}\right)^2$ (C) $y = x \left(\frac{dy}{dx}\right)^2$ (D) $y = x \cdot \frac{dy}{dx} + a^2$ (A) $y = x \cdot \frac{dy}{dx}$ If for vectors $\overline{a}, \overline{b}$ and \overline{c} , $[\overline{a} \ \overline{b} \ \overline{c}] = 4$ then $[\overline{a} \times \overline{b} \ \overline{b} \times \overline{c} \ \overline{c} \times \overline{a}] = \cdots$ 94. (C) 4 (A) 16 (B) 64 (D) 18 for non-zero non collinear vectors $\overline{a}, \overline{b}, \overline{c}$ and $\overline{a} \times \overline{b} = \overline{b} \times \overline{c} = \overline{c} \times \overline{a}$ then $\overline{a} + \overline{b} + \overline{c} = ...$ **95**. (C) $\overline{0}$ (A) abc (B) -1 (D) 1 96. If $\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0$ and (1, a, a²) (1, b, b²), (1, c, c²) are non-coplaner vectors then abc = (C) -1 (B) 2 (A) 0 (D) 1 Normal of a plane passing through (3, 2, 0) and containing the line $\frac{x-3}{1} = \frac{7-6}{5} = \frac{z-4}{4}$ is : 97. (B) (-1, 1, 1) (A) (1, 1, 1) (C) (1, -1, 1) (D) (-1, -1, 1) 98. The measure of the angle between the lines whose direction numbers are (l, m, n,) and (m-n, n-l, l-m) is (A) $\frac{\pi}{4}$ (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{2}$ If a plane has x-intercept l, Y- intercept m and z-intercept n and is at k units distance from the origin, **99**. then (A) $\frac{1}{l^2} + \frac{1}{m^2} + \frac{1}{n^2} = \frac{1}{k^2}$ (B) $\frac{1}{l^2} + \frac{1}{m^2} + \frac{1}{n^2} = \frac{1}{k^2}$ (C) $\frac{1}{l^2} + \frac{1}{m^2} + \frac{1}{n^2} = \frac{1}{3k^2}$ (D) $\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = k$ 100. The area bounded by the curve $y = 2x - x^2$ and x-axis is (B) $\frac{2}{2}$ (A) $\frac{1}{2}$ (D) $\frac{4}{2}$ (C) 1 101. $f: R-\left\{\frac{1}{q}\right\} \longrightarrow R-\left\{\frac{p}{q}\right\}, f(x)=\frac{px-1}{qx-1}, p \neq q$, then f is (A) one-one and onto (B) many-one and not onto (C) one-one and not onto (D) many-one and onto

SAMPLE PAPER **102.** If $f: R \to R$, $f(x) = x^3$, $g: R \to R$, $g(x)=3^x$, then $\{x|(fog) (x) = (gof) (x)\} = \dots$ (B) $\{0, \sqrt{3}, -\sqrt{3}\}$ (A) {0} (C) R (D) {0,3} 103. The inverse element of a for the binary operations * defined by a * b = a + b - ab, $a, b \in z$ is : (B) $\frac{a}{1-a}$ (C) $\frac{a-1}{a}$ (D) $\frac{a+1}{a}$ (A) $\frac{a}{a-1}$ **104.** The value of $\cos(\cos^{-1}x + \cos^{-1}y) + \cos(\sin^{-1}x + \sin^{-1}y)$ is : (C) $\frac{\pi}{2}$ (D) $-\pi$ **(B)** π (A) 0

105. If $-1 \le x, y, z, \le 1$ such that $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$, then $x^{100} + y^{101} + z^{102} - \frac{9}{x^{100} + y^{101} + z^{102}} =$ (A) 0 **(B)** 1 (C)–1 (D) 3

106. If
$$a \neq 0$$
, $b \neq 0$, $c \neq 0$ and $\begin{vmatrix} 0 & x^3 + a & x^5 + b \\ x^2 - a & 0 & x^3 - c \\ x^4 - b & x^2 + c & 0 \end{vmatrix} = 0$ then $x = (A, 0)$
(A) 0 (B) 1 (C) $a + b + c$ (D) $-(a + b + c)$

107.
$$\begin{vmatrix} 10\\ 4\\ 10\\ 5\\ 11\\ 11\\ 12\\ 12\\ 12\\ 8 \end{vmatrix} \begin{pmatrix} 11\\ 12\\ 12\\ 9 \end{pmatrix} \begin{pmatrix} 12\\ 13\\ 13\\ 14 \end{vmatrix} = 0 \text{ then } m = \dots$$
(A) 6 (B) 5 (C) 4 (D) 1

(A) 6 (B) 5 (C) 4 (D) 1

108. If $A = \begin{bmatrix} 3 & -1+x & 2\\ 3 & -1 & x+2\\ x+3 & -1 & 2 \end{bmatrix}$ is singular and $x \in [-5, -2]$, then $x = \dots$

(A) 0 (B) -2 (C) -4 (D) 0, -4
109. If A = BX, A =
$$\begin{bmatrix} 1 & -2 \\ -3 & 5 \end{bmatrix}$$
 and B = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then matrix X =

(A)
$$I_2$$
 (B) A^{-1} (C) A
110. If $f(x) = \log_3 (\log_5 x)$, then $f'(x) = \dots$

(A)
$$\frac{1}{x \log_{e} x \log 3}$$
 (B) $\frac{1}{x \log_{e} x}$ (C) $\frac{1}{x \log_{e} 3 \log_{e} 5}$ (D) $\frac{1}{x \log_{e} x \log 5}$

111. If
$$y = \sin x + e^x$$
, then $\frac{d^2 x}{dy^2} = \dots$
(A) $(-\sin x + e^x)^{-1}$ (B) $\frac{\sin x - e^x}{(\cos x + e^x)^2}$ (C) $\frac{\sin x - e^x}{(\cos x + e^x)^3}$ (D) $\frac{\sin x + e^x}{(\cos x + e^x)^3}$

(D) –A

MATHS

GUJCET

MATHS

112. If
$$y = x^{xx}...\infty$$
, then $\frac{dy}{dx} =$
(A) yx^{y-1}
(B) $\frac{y^2}{x(1-y\log x)}$
(C) $\frac{y}{x(1+y\log x)}$
(D) None of these
113. $\int e^{x\log 2} e^x dx =+c$
(A) $2^x e^x$
(B) $\frac{(2e)^x}{(1+\log 2)}$
(C) $\frac{e^x}{\log(2e)}$
(D) $\frac{2^x}{1+\log_e 2}$
114. $\int \frac{x^2 dx}{(x+x\log x)^3} = ...+c$
(A) $3\log |x + x\log x|$
(B) $\frac{-\log x}{2(1+\log x)^2}$
(C) $-\frac{1}{2(1+\log x)^2}$
(D) $\frac{3(1+\log x)}{x^3}$
115. $\int x^{4x} (1+\log x) dx = ...+c$
(A) $\frac{x^{5x}}{5}$
(B) $\frac{x^{4x}}{4}$
(C) x^{4x}
(D) x^{5x}

116. For a post, husband and wife go for interview. If the pobaility that husband is selected is $\frac{1}{7}$ and the

probability that wife is selected to $\frac{1}{5}$, then the probability that only one of them is selected is

(A) $\frac{4}{35}$ (B) $\frac{6}{35}$ (C) $\frac{2}{7}$ (D) $\frac{1}{35}$

117. If A and B are independent events such that $P(B) = \frac{2}{7}$, $P(A \cup B') = 0.8$ then $P(A) = \dots$

(A) 0.1 (B) 0.2 (C) 0.3 (D) 0.41

118. One ticket is selected at random from 100 tickets numbered, 00, 01, 02.. 98, 99. If A and B denote repsectively the sum and the product of the digits on the tickets, then $P(A = 9 / B = 0) = \dots$

(A)
$$\frac{2}{17}$$
 (B) $\frac{2}{19}$ (C) $\frac{2}{21}$ (D) $\frac{2}{11}$

119. The corner points of the feasible region determined by the system of linear constraints are (0, 15) (15, 15) (25, 25), (10, 35) (10, 0). Let z = px + qy, where p, q, > 0. Condition on p and q so that the maximum of z occurs at both of points (25, 25) and (10, 35) is

(A) 3p = q (B) p = 2q (C) 2p = 3q (D) 3p = 2q

120. Objective function of a linear programming problem is

- (A) a constant (B) a function to be optimized
- (C) an inequality (D) a quadratic equation